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The effectiveness of the method of self-similar interpolation [1] in its simplest version is demonstrated by solving problems of 
slow plane Couette and Poiseuille flows of a rarefied gas and the problem of the structure of a strong shock wave in a monatomic 
gas. Interpolations of the function with respect to its specified asymptotic representations of a different form at the ends of the 
interval in which the function is specified, usually semi-infinite, are obtained. © 2005 Elsevier Ltd. All rights reserved. 

1. T H E  M E T H O D  O F  S E L F - S I M I L A R  I N T E R P O L A T I O N  

Suppose  we know the  fol lowing asymptot ic  forms for  the  r equ i r ed  funct ion f(x), x = [0, oo) 

b, N x --+ O 

f ( x )  = ] ~_~ Aixa~, 

L i = O  

x ---) oo 
(1.1) 

Using  the  m e t h o d  of  self-s imilar  i n t e rpo la t ion  [1], we cons t ruc t  in t e rpo la t ion  fo rmulae  of  d i f ferent  
orders .  The  asymptot ic  fo rm for x ~ 0 is fixed, and  hence  we will only give approx imat ions  for  
f(x ). 

The first order. We will use the  pr inc ipa l  t e rms  of  the  expans ion  

f ( x )  = ao x%, x--~oo 

The  in te rpo la t ion  fo rmula  has the  fo rm 

f * ( x )  = (b l/n + Bx) n 

(1.2) 

(1.3) 

Quan t i t i e s  ob t a ined  by this m e t h o d  are  d e n o t e d  by an asterisk.  
As  x ~ 0 we have f f  (x) -~  f(x). The  unknowns  B and n are  found  f rom the equa t ion  

~0 Bnx n = AoX 

which follows f rom re la t ions  (1.2) and  (1.3) a s x  ~ oo. H e n c e  n = 0% B = A 1/~°. As a resul t  we ob ta in  
the  fo rmula  

f * ( x )  = (b l/a° + A~/%x) % (1.4) 

which gives the  correc t  asymptot ic  forms bo th  as x ~ 0 and as x ~ oo. 
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The second order. We have 

f ( x )  = AoX + A 1 x  , x---+~ (1.5) 

f * ( x )  = [(b TM + Cx) n/m + Ox2] m ( 1 . 6 )  

To determine n, m ,  C and D we will consider the asymptotic form as x + ~ .  Initially we equate the 
principal terms in formulae (1.6) and (1.5); as a result we obtain the equation 

omx 2m = Ao x% 

Hence m = a0/2, D = A 2/~°. Henceforth, in Eq. (1.6), we will neglect the term b TM compared with Cx 
and linearize. We obtain 

I l'°, -2 n = , C = A~oAl [~ = ~1-c~0 +2,  T = a0 

The third order. We have 

f ( x )  Ao x% % % = +AIX +A2x , x--+~ 

f * ( x )  { [(b 1/n + Dx)  n/m = + Ex2] m/p + Gx3} p 

In practical problems, as a rule, we are given a few terms of the asymptotic series at the ends of the 
interval. In order to obtain formulae of the form (1.1), we will use algebraic transformations (addition 
or subtraction of constants, and multiplication or division by certain functions of x, as, for example, in 
Section 2), if in the asymptotic series there is a term with a logarithm, an exponential transformation 
is used with further expansion of the exponential function in a power series as x ~ 0 (Section 3), and 
if there is a term with an exponential function in the asymptotic series, a logarithmic transformation is 
carried out (Section 4). We then find an interpolation formula for the converted expressions and carry 
out an inverse transformation. 

2. THE C O U E T T E  P R O B L E M  

Consider the slow flow (local Mach number M ~ 1) of a rarefied gas between parallel plates, which 
move relative to one another with equal and opposite velocities. The integral equation for the velocity 
profile has the form [2] 

1/2 

g(x) -= f - ( x ) + ~  I T-a(IX-sI)g(s)ds 
- - - 1 / 2  

(2.1) 

,:,.>: +xll} 

si ( 2 z )  1 Ti(x)  = Z exp - Z  - dz, i = 0 , -1;  ~ = - -  
Kn 

0 

(2.2) 

It is required to obtain the friction stress P=. When ~ ---> 0 we have [2] 

P = P ~ z l P ° z  = 1 - ~/-~c1,12 (2.3) 

When c~ ~ ~ (taking slippage into account) 

P = ~/-~10~- 2,,]~1~ 2 

where/~o is the friction stress in the free-molecule case. 

(2.4) 
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The self-similar interpolations of the different orders have the following form 
the first order 

I 1, {x--+0 ; p .  _ 4~ 
(2.5) 

the second order 

1 - 4~od2, ot --+ 0 P* (x 1 + (or + 2,,/~) (2.6) 
P = L / - ~  I o~ , o~ --> oo ; = 

the third order 

I 1 - f f -~cx /2 ,  c~ --+ 0 

P = [, , /~/a - 2,,/~/ot 2, a --~ ~, 

P* = a 1+ ( 6 r t ( ~ / ~ - l ) + 3 ~ o t + ~ c t  2) 

(2.7) 

Equation (2.1) was solved numerically for several values of ~ by the variational method of least squares. 
We chose a twenty-degree polynomial as the test function. 

A comparison of the values of the ratio P = PxjP°z as function of the inverse Knudsen number ~ (N 
are the results of a numerical calculation, and I> /2  and/3 are the interpolations of the first, second 
and third orders (formulae (2.5)-(2.7)) is given below 

c~ 0.1 0.3 1 3 10 30 100 
N 0.927 0.819 0.600 0.360 0.147 0.0559 0.0176 
11 0.947 0.855 0.639 0.371 0.150 0.0558 0.0174 
12 0.922 0.807 0.585 0.344 0.145 0.0549 0.0173 
13 0.924 0.817 0.603 0.356 0.147 0.0554 0.0174 

The maximum interpolation error is 6% (for a = 1), 2.7% (for ~ = 2) and 0.6% (for a = 30) for 
interpolation of the first, second and third orders respectively. 

3. P O I S E U I L L E  F L O W  

Consider the slow flow of a rarefied gas between two infinite parallel fixed plates under the action of 
a small pressure gradient Op/Ox = -Kp0, K = const, wherep0 is the pressure atx = 0, and thex coordinate 
is directed along the plates and is related to the distance between them. The integral equation for the 
velocity profile of the gas u, = g(y)V, V 2 = 2kT/m has the form [2, 3] 

1/2 

-ff-K[1-f+(x)] + 0~ g(x) = 20t ~ S Tq(ot[x-si)g(s)ds 
-112 

(3.1) 

The functions f + and T 1 and the quantity 0¢ are given by formulae (2.2). 
It is required to calculate the dimensionless volume flow rate of the gas 

1/2 

Q(ot) = I g(x)dx 
-1/2 

The asymptotic representations of the function Q(~x) have the form [2, 3] (7 is Euler's constant) 

= I - l n c d , / - ~ + ( 1 - y / 2 ) / ~ ,  o ~ 0  
Q(oQ L(x/6 + 1.0162, ~--+,,~ 

(3.2) 
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The self-similar interpolation is given by the formula 

Q*(cQ = A+Ba+Cln(D+EoC1) ;  A = 1.0162 
(3.3) 

B = 1/6, C =  1/~f~, D = 3/2, E =  0.3363 

The function Q({z) has a minimum (the well-known Knudsen paradox [2]); when cz ~ 0 the function 
Q(x) contains a logarithmic term. These features complicate the determination of the interpolation 
(compared with the case considered in Section 2). Nevertheless, the results of calculations using formula 
(3.3) differ only slightly from the numerical results in [3] (see below, where N are the results of numerical 
calculations of Q(cz) [3] and I are the results of using formula (3.3)) 

0.01 0.05 0.1 0.5 1 5 10 50 100 500 
N 3.050 2.302 2.033 1.618 1.539 1.991 2.768 9.370 17.70 84:36 
I 3.044 2.346 2.066 1.560 1.470 1.923 2.721 9.357 17.69 84.35 

The maximum difference is equal to 4.5% for a = 1, in the region of the minimum flow rate. 

4. THE S T R U C T U R E  OF A S T R O N G  S H O C K  WAVE IN 
A M O N A T O M I C  GAS 

The one-dimensional time-independent motion of a monatomic gas in the direction of the x axis is 
described using Boltzmann's kinetic equation, while we will represent in the form 

CxOf(x , c)/Ox = Jl(x, c) - f ( x ,  e)J2(x, c) 

Jl(X, c) = I f ( x ,  c+)f(x, c_)d~, J2(x, c) = I f ( x ,  Cl)da 

d~ = gbdbdedc I, c+ = ( c + c  l + g k ) / 2  

(4.1) 

Here c = (% Cy, cz) is the velocity of a molecule, g = ]c - C l ]  is the modulus of the relative velocity of 
the molecules on collision, b is the impact parameter, e is the azimuthal angle and c_+, k are the velocities 
of the molecules and the unit vector of the relative velocity of the molecules after collision. 

The number density, velocity and temperature of the gas are expressed in terms of the distribution 
functionf(x, c) by the formulae 

n = I f (x ,e )de ,  u = ![Cxf(x ,e)de 

2 2 2  
T = [ ( c , - u )  +Cy+Czlf(x,e)dc 

(4.2) 

When x ~ T-oo the distribution function approaches the Maxwell functions 

f 0  .\3/2 2 2 m 
f~/ = nj~-~) exp{-Oj[(Cx-Uj)2+Cy +cz]}, Oj- 2kTj; j =  1,2 (4.3) 

The values of the density, velocity and temperature of the gas upstream (x = _oo) and downstream 
of the shock wave (x = oo) are equal to nl, Ul and T1 and n2, u2 and T2 respectively. These values are 
connected by the well-known relations [4] 

n 2 _ u 1 _ 4M 1 T 2 = (M 1 + 3)(5M 1- 1) 
v/1 u 2 M 1 + 3' T 1 16M 1 (4.4) 

where M 1 is the Mach number upstream of the shock. 
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The integral form of Eq. (4.1) for the problem of the structure of the shock wave has the form [2] 
(A is an operator) 

f ( x ,  e) = .4f  = W(G c)d% c x > 0; Sw(x, e)dz, Cx < 0} 
X 

w(~, e) = JI(T, C) F ~J2("C1, c) • 1 
Cx exp/-j-- Cx dT'lJ 

L ~ 

(4.5) 

We will use the "pseudo-Maxwellian" model of the molecules, when the intermolecular potential is 
equal to )~r 4,  where r is the distance between the molecules. The molecules are elastic spheres, the 
diameter of which d depends on the relative velocity of the molecules on collision [5] and is equal to 
the distance of closest approach of the molecules on collision, i.e. (4)~/(mg2)) 1/4. We will introduce the 
quantity o0 by the equation ~d 2 = o0g-k Then J2(x, e) = oon. 

We will solve integral equation (4.5) by the method of successive approximationsf (n) = d r @ -  1), taking 
into account boundary conditions (4.3) with the choice of the following zeroth approximation [6] 

f ( ° l ( x , c )  = / f ~  when - ~ < x < 0  or x = 0, c x > 0  

[ f~t  when 0 < x < o o  or x = 0, c x<O 

The quantities f ~  a n d f ~  t are calculated for (nl, 01, Ul) and (n2, 02, u2) respectively. 
Using the equation 

f j ( x ,  c+)f j(x ,  c_) = f j ( x ,  e) fd(x ,  ct), j = 1, 2 

we obtain in the first approximation 

(4.6) 
f(S)(x, c) : I f ~  + ~(fs~_ fS~)Bl(x ' Cx ) when x < 0 

M M 
[/2M+( 1 - -~)(f l  --f2 )B2(X'Cx) when x > 0  

10 when cx<O Bj (x , c  x) = exp(-OonjX/Cx), j = 1,2 (4.7) 
= when c x > 0' 

Using relations (4.2) and (4.7), we obtain an expression for the density in the first approximation 

= Inl(1 - n i l  +n12), x < 0  

n [n2(1 n22 + n21), x > 0 (4.8) 

Here 

nm¢0m) 1/2 NJ m' fO N2 m r njrn = Xl ,  n = t amBldcx,  = IamB2dc x n j \ ~ )  ,d ,i 
-~ 0 (4.9) 

Am expL-0m(< -uo  J = , m =  1,2 

We will consider the asymptotic behaviour of the integral 
oo 

0 

(4.10) 
yO+ • 1 ) / 3  i 2 / 3  1 

Iz exp[-y ~(z ) ]dz ,  ~ ( z )  = (z _ qy-l/3)2 + _ 
z o 

wheny --4 oo. Here i, y and q are parameters. The variable z is introduced by the formula w = yll3z. 
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The function O(z) has a minimum at the point z0, where 

1 1 21/3 2 5/3 2 3 -1/3 
Zo = - ' ~  + "Se +--d --e +'-65 - e  + . . . .  e = qy  

2-~ J - -  t31 

Following Laplace's method [7], we expand the function O(z) in a Taylor series in the neighbourhood 
of the point z0 

l+(z  o £)2 + (1 + 1 ) ( Z - Zo)  2 (Z-  ZO)3 (Z - ZO) 4 
- -  - 4 I.- ------------~ 

O(z) = Zo Zo Zo Zo 
+ ... 

and substitute it into expression (4.10). We obtain 

) 1 3 i i 2 / 3 (  2 l / l l  [ 2/3( ~'0 1 /  ldz (4.11) Ji = y(i+l z0ex p -y (z0-e)  +2- exp -y  1+ (z-z0) 2 
0 Z0 2 

Evaluating this integral, expanding the expression obtained in series in e, and replacing e by qy-1/3, 
we have 

i I i+1  ,~-1~ [- 2 2 t (y)1/3 J i ( Y , q ) l y ~ = - -  ~ l+--~--qp j e x p L - a ~ 2 + 2 q ~ - ~ q  , ~ = (4.12) 

Hence we obtain the following asymptotic expressions as x ~ 

1 nj [- ,,,~l/3((Yonilxl'~ 2/3-] 
n 0 = --~n-- iexpL-,v  j ~.---~---) j ,  i , j  = 1,2 (4.13) 

For large numbers M1 in formulae (4.8) the quantities nil and hi2 are small compared with n12 and 
n22 respectively. Neglecting them, we obtain 

= /n l ( l+n l2 ) ,  x---~-~ (4.14) 

n [n2(1-n22 ), x---)~, 

The method of constructing the interpolation formulae differs from those used in Sections 2 and 3 
in specifying the asymptotic representations at the ends of the infinite interval. The following method 
is used. It is assumed that the function n(x)  has continuous derivatives up to the third order inclusive, 
and the function is split into left- and right-hand parts at the point x = 0. Interpolations are found for 
the left- and right-hand parts, containing the unknown values of the function and its first derivative at 
the point x = 0. To determine these values, it is assumed that the second and third derivatives of the 
left- and right-hand parts are equal atx = 0. The required interpolation is given by complex formulae, 
which are not presented here. The results of calculations of the density profile for M1 = 10-30 were 
compared with the results of calculations by the standard method for kinetic theory by direct statistical 
modelling. In Fig. 1, for Ma -- 11, we show the interpolation curve of the normalized density n (the 

1.o 

n 

0.5 

o 
-lO 

S 7 ;I 

J 
0 

Fig. 1 

10 x 
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continuous curve) and the data of a numerical calculation (the dashed curve). The x coordinate refers 
to the mean free path upstream of the wave. The relative difference between these results does not 
exceed 10%, which is close to the error of calculations by direct statistical modelling. 
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